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ABSTRACT 
This paper  proposes means whereby a  test for the  goodness of fit and  an  estimate of the order of a Markov  chain 

model  may be obtained concurrently.  Application of the  method to daily  precipitation  data for two  seasons of about 
30 yr. in New Mexico,  Colorado, and Oregon suggests  two  tentative  conclusions.  First,  within  a  single  climatic  area, 
order estimates  tend toward  zero as precipitation  events become  rarer. This  may occur at the drier stations or at  
higher  thresholds  defining a wet day.  Second,  between  climatic areas, the  station  with  the greater diversity of air 
mam types will tend to have order estimates greater than  the  station  having  the  same seasonal  mean precipitation 
but a less diverse  climate. 

1. INTRODUCTION 

In 1924, Besson [2] reac,hed the conclusion, through  a 
statistical analysis, that  at Montsouris,  France,  past 
weather exerts an influence  on future weather. I n  their 
well-known monograph Brooks and  Carruthers ([4], p. 
315) provide a  statistical  test for the presence of persist- 
ence in sequences of weather  events. The notion of 
persistence in weather and  climate is certainly  not new, 
but only recently  have the  Markovian models been ap- 
plied to climatological processes exhibiting sequential 
patterning. 

Papers using Markovian models in recent  years  have 
met, with considerable success. Most  have  dealt exclu- 
sively with occurrences of wet and  dry  days.  Typical of 
those employing discrete time  and  stationary  transition 
structure  are  the familiar papers  by Gabriel and Neumann 
[9], Gaskey [SI, and  Hopkins  and  Robillard [13]. Green 
considered continuous time [lo], Feyerherm and Bark 
[6, 71 dealt with transition structure changing smoothly 
through  the  year,  and Weiss [14] included mention that 
sequences of weather t,ypes described in more elaborate 
terms than simply "wet" and "dry" are amenable to such 
treatment,. 

Several of these studies  have employed no statistical 
tests for goodness of fit between models and observations. 
Only two (Gabriel  and  Neumann;  Feyerherm  and Bark) 
appear  to  hare considered orders of dependence greater 
than one in their  Markov chain models. 

While noting also that none of t,hese papers has con- 
sidered models having more than two states, it is also 
worth  noting the  data which  would  be required to do so. 
Since the number of state-sequences required to  define 
transition  in  a tih-order s-state process  is st+', one may 
expect  a drop in  the mean cell frequency with a  small 
increase in s such as to make weat,her records at  most 
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stations (25-40  yr.) too short for consideration of time 
units the  order of a month. For example, a 30-yr. record 
considered by 3Oday months would have 900 counts to 
distribute  among 45, or 1,024, cells in  a model of four 
states  and order 4. 

In this  paper we  wish to present  a  method  and  some 
results wherein a)  stationarity  is assumed,  b)  testing 
the fit of models and observations  takes place, and c) the 
order of the  Markov  chain  is  estimated for those proc- 
esses which exhibit  Markovian  characteristics. The 
method allows as well for increasing the number of states 
in  the model without  undue difficulty. _I 

2. METHODS 
Following the theory of Billingsley [3] and  the rec- 

ommendations of Hoe1 [12], we propose the following 
method  for  various  types of modelling and  testing Markov 
chains  in climatology. 

The  events  in a sequence are  restricted to a  finite  list 
of possible outcomes, or states, a,, az, ..., a,. The process, 
{ xn}, represented by observed sequences is  an  s-state 
process. If the probability that  the process will enter 
state a ,  on the  kth  step depends  upon the sequence of 
states  in  steps (k-t) through (k-1), and on no  other,  then 
the process is  a  tth-order  s-state process. 

In most of the papers referred to above the  chains 
modelled were simple chains  with  a  maximum allowable 
value of t= l :  first order. In  several, as  noted, models 
with t=2 were considered. In  our  approach, the condi- 
tional probabilities governing entrance  into  the  various 
states at) each step  are of the  form: 

p a  '... a , : a l + l = ~ ~ z n = a ~ + l l z n - l = a l ,  * * *,zn-l=at}. 

Each of these is termed  a  transition  probability, and  the 
matrix of all these is the  transition  structure of the proc- 
ess. In  a  sample of the process sequence, the observed 
frequency of the n-step transition  from state al through 
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states %, ..., a,-l and to state a, is denoted by j a  a,,-] :an. 
There is a separate frequency, j ,  for  each of the S" 

possible permutations of the  states. 
The question of whether  or not  the observed sequence 

represents  a  tth-order  Markov  chain is answered by ap- 
plication of a Chi-square test  with the  statistic: 

(fa] ... atfI-fal ... a t p a l  ... at:at+l) 
2 

X2' 
as...at+t fal . . .acPal. . .at :at+l 

and s l+l-s degrees of freedom. 
To  make use of the  test, of course, one must  have  not 

only the  counts, or frequencies involved, but also an esti- 
mat'e of the  transition  probability, p .  Billingsley [3] and 
Hoe1 [12] recommend assuming that  the process being 
analyzed is of some high but manageable  order, t ,  and  then 
testing the (r+1) hypotheses that  the chain  is of order 
0, 1 ,  2, . . . , r (r<t) within the higher order assumption. 
The  test  statistic resulting from these assumptions and 
hypo theses is : 

[ ~ a l . . . a t + l - ~ a l . . . a t  (ff ac-r+l.. .at+l  at-r+l.. .at 

x2= 2 
a1...a1+1 

fa,. . t -r+l . . .Qt+l  

c-r+l...at ) 
for the hypothesis that  the order is r; for r=O, 

where N is  the  total  number of transitions  counted. As the 
total number of transitions becomes large,  the  statistic  is 
asymptotically  distributed as Chi-square  with (st+'-st ) -  
( s ~ ~ - - s ~ )  degrees of freedom,  under the null hypothesis. 
The estimate of the order of the process is  taken  to  be  the 
smallest  value of r which produces a nonsignificant test 
statistic. In this way the  estimating  scheme also provides 
the  test for goodness of fit. 

The results  to  be described in this paper  are from 
models in which s=2, t=4, and r=0,1,2, and 3. The 
computer  program  calculates  from  a  sample  sequence  the 
counts of the z5, or 32, possible permutations of the two 
states  wet (W)  and  dry (0) taken five a t  a time. As an 
example, in one case it was found that  the sequence 
DDWWD was observed 13 times, out of the 36 times 
which DDWW was observed. Under  the full 4th order 
model, the  estimate of the  transition  probability p d d t o w d  

is 13/36. To test the  assumption that  the process is of order 
2 rather  than 4, we observe that  the sequence WWD oc- 
curred 50 times out of the 101 times that  the sequence 
WW was observed. Hence, the  contribution to the  test 
statistic (a  sum  taken over 32 such sequences) of this 
particular sequence was: 

Add,wd=~13-36(50/lol)]2/(36)(50/101)=1.303. 

For  the  test of the hypothesis that r=2, the degrees of 
freedom used are (25"24)-(2a-22), or 12. 

3. RESULTS 

In 1965 the methods described were applied to  the  daily 
precipitation records of two Oregon stations [l]. They  are 
Seaside, a  coastal  station  with  wet  winters and  relatively 
dry summers, qnd Squaw Butte, a  station  in  the  high des- 
ert where both winter  and  summer are  dry  by comparison 
with the coastal areas. The Seaside data were for  the 
33 yr. 1931-1963, and those for Squaw Butte were for the 
28 yr. 1937-1964. The records were each examined for  a 
winter period and  a  summer period with  a  threshold  di- 
viding the two states  taken  to  be 0.01 in. of precipitation 
or more as  a wet day.  Three definitions were  used for each 
of the two seasonal periods, and Seaside's winter  periods 
were analyzed with an additional threshold of 0.20 in. of 
precipitation. The results are summarized in  table 1,  
where both  the definitions of the seasonal periods and  the 
Chi-square  statistics are shown. 

Subsequent to  the publication of Oregon's methods and 
results,  Heermann [ l l ]  at Fort Collins and Finkner [8] at 
Las  Cruces  undertook similar tests  for Colorado and New 
Mexico data as  part of the research program of the Western 
Regional Research  Project, W-48, of the US.  Department 
of Agriculture. Heermann  and  Finkner used more stations 
and  more  thresholds than were used in Oregon, the same 
values for t and r, but fewer definitions of "winter" and 

summer." Their  results  are summarized in tables 2 and 3. 

4. DISCUSSION 

IL  

When the order  estimates from tables 1 ,  2, and 3 are 
combined as in table 4, and when these estimates  are  then 
used to  compute mean order  estimates for each threshold, 
as in table 5, the tendency is readily apparent  that  the 
order of the  Markov  chain decreases as  the threshold 
defining states increases. This  tendency  is  due to  the 
increase in relative rarity of one of the  states (W)  as  the 

TABLE 1.-Summary of Chi-square statistics for two Oregon stations 

Station Period 
(in.) 

Seaside .......... Jan ____....____. 

Jan. 15-Feb. 20. 
Feb-. _ _  -. . . . . . . . 
Jan. -. . -. . . . . . . . 

Jan. 15-Feb. 20. 
Feb.. . . . . . . . . . -. 

July __._ . . . . -. . . . 
Aug.". -. -. . . . . . 
July 10-Aug. 15. 

Squaw Butte ...- Jan ....___._.... 

Feb.. . . . . .-. . -. . 
Jan.  15-Feb. 20. 

July". - -. . . . . . - - 

July 10-Aug.  15. 
Aug _ _ _ _  -. _ _  _ _ _   _ _  

0.01 
.01 
.01 
.20 
.20 
.20 
. 01 
. 01 
. 01 
.Ol 
.01 
. 01 
.01 
. 01 
. 01 

- 
0 - 

175 
172 
219 
150 
112 
182 
80.7 
66.0 
69.1 
64.2 
168 
67. U 
70.2 
67.5 
58.3 
- 

__ 
1 

_. 

27.0 
8. b 

19.8 
27.2 
25.9 
30.0 
15.2 
20.2 
25.5 
33.5 
31.9 
29.9 
27.6 
15. 8 
26.4 
__ 

- 
2 
- 
8.19 

22. 4 
16.6 

22.8 
18.1 

14.5 

23. U 
16.5 

30.3 
21.1 
12.7 

15. 1 

9.38 

9.54 

5'.  51 

- 

Test value of r 
estimated 

Order 

(P <0.05) l 3  
6.26 
6.85 
7.64 
1.94 
8.  13 
6.87 
1. 11 
8.88 
13.5 
18.3 
19.0 
11.6 

5.80 
7.50 

9. 10 

- 

1 
3 
1 
2 
3 
2 
1 
1 

>3 
2 

>3 
2 
2 

2 
1 



MONTHLY WEATHER  REVIEW 

TABLE 2.-(a) Selected Chi-square  statiaties for New Mez iw  stations 
and (b)  summary of order estimates for 14 New  Mezico stations 

TABLE 3.-Summary of Chi-square statistics for three Colorado stations i 
Test value of r 

Test  value of r Etation 'hresholt 
(in.) 

- 
. 01 
.10 
.20 
.w 
. 01 
.10 

.w 

.20 

. 01 

.02 

.03 

.05 

.10 

.20 

.w  

. 01 

.02 

.03 

.05 

.10 

.50 

. 01 

.10 

.20 

.50 

. 01 

.10 

.20 

.w  

.XI 

- 

- 
0 

- 
3 - 

0.46 
1.44 

233 

8.32 

2.93 

48.4 

13.5 

10.4 
18.8 
9.42 
6.66 
7.00 

1.36 
0.26 

12.4 

15.3 
13.4 
9.87 
5.00 
1.47 

0.04 
1.47 

9.10 
7.09 
1.89 
0.12 

3.86 
4.28 
0.42 

12.3 

- 

Period  Thras- 
hold 
(in.) 

Jan-. _ _ _ _ _ _ _ _  ~ 0.01 
.03 
.05 

.20 

.10 

.30 
July. - - _ _  - __. . .Ol 

.03 

.05 

. 2 0  

.05 I .10 

' .05 
.03 

.10 

.20 

.30 

Period ___ 

July ... .____._ 

0 Jan.. _ _ _ _ _ _ _ _ _  
1 1 

0 July -... _ _ _ _  _ _  >3 Jan _ _ _ _ _ _ _ _ _ _ _  
1 July _ _ _ _ _  _ _ _ _ _  1 Jan _ _ _ _ _ _ _ _ _ _ _  
1 July .-...-.... 
1 Jan _ _ _ _ _ _ _ _ _  _ _  1 July ________._ 

1 Jan _____.__ _ _ _  1 July ________._ 

2 Jan __________. 

1 July _ _ _ _ _ _ _ _ _ _  
2 Jan __.___..__. 

1 July ..-....... 
0 Jan _ _ _ _  __.____ 

1 July ______..._ 

1 Jan _ _ _ _ _ _ _ _ _ _ _  
1 July -... ...- ~. 

1 Jan _ _ _ _ _ _ _ _  ~.. 

1 July _____. _ _ _ _  
1 Jan ____._____. 

1 July _ _ _ _  ~ ..... 
1 Jan _ _ _ _ _ _ _ _ _ _ _  
1 July. - -. -. - __. 

stimated 
Order 

P <0.05) 

2 
2 
2 
2 

0 
0 

1 
1 

0 
1 

0 
0 
1 
1 
2 
1 
1 
1 
1 
1 
1 
1 
0 
0 

~ 

0.30 

0 

0 
1 

0 
0 
0 
0 

0 
1 

1 

0 
1 

0 

0 
1 

0 
0 

0 
1 

0 
1 

0 
0 
0 
0 

0 
1 

0 

Etation 
( a )  

Blaomfleld - - ~ 

Corona. -. . . . . 

Etation 
(b )  

Albuquerque. 

Rloomfleld ... 

Cimmaron.. . 

Clayton - ~ -. . 

Clovis.. __. . . 

Corona -..... 

Fort Bayard. 

Lovington. - - 
Mosquero. ~. . 

Rofwell "... 

Eanta Fe. ... 

sooorro".". 

Tucumcari - - 

University 
Park. 

__ 
3 
- 

13.5 
15.2 

4.92 
17.7 

1.01 
3.67 
9.49 
6.81 

3.42 

0.63 
1.40 

6.56 
6.72 
9.14 
3.94 

3.28 

4.73 
3.69 

8.40 
3.64 
4.53 
3.44 

10.6 

10.0 

~ 

1 2 
" 

9.16 

48.6 48.9 
262 3.26 
2.61 6.11 
6.41 

21.2 18.4 
13.6 13.2 

35.4 2ek8 
16.7 6.73 

39.3 27.4 
23.9 15.8 
16.4 13.6 
16.8 11.4 
20.3 16.6 

38.8 0.28 
3.35 2.99 

17.8  17.6 
16.3  16.5 
13.4 12.3 
12.9 9.68 
10.1  6.35 
3.36 3.18 
0.13 0.08 

8.30 8.36 
6.35  2.88 
6.78 5.57 

7.07 5.76 
8.27 4.26 
2.66 2.23 

12.8 12.5 

21.6 15.8 

- 
0 

___ 

69.1 
70. 6 
67.2 
51.8 
19.9 

47.0 
64.5 
43.3 
22.5 
10.9 

53.4 
53.7 

46.9 
65.6 

33.5 
27.3 
52.5 
49.9 
46.4 
33.1 
19.1 
19.1 

7.40 

5.15 

__ 

- 
1 
- 

35.1 
36.6 
37.8 
30.9 
19.9 

15.5 
15.2 
19.2 
10.1 

4.23 

9.04 
2.21 
14.5 

32.6 
14.8 

20.0 
15.5 

20.7 
19. 6 
18.7 
17.0 
8.20 
9.71 
8.82 

__ 

- 
2 
- 

17.9 
16.3 
20.0 
11.4 
18.6 

10.7 
10.3 
11.9 

3.92 

5.88 
6.10 
1.32 
7.44 
7.  72 

5.25 

6.60 

14.7 

11.9 

14.5 
16.4 
15.4 
6.47 
7.38 
8.10 

~ 

I 
22.2 
10.6 
11.4 
49.1 
24.6 
34.6 
19.9 
46.0 
72.6 

384 
51.2 

40.3 
34.3 

39.0 
79.0 
69.6 
54.3 
65.4 
59.1 
38.6 

49.7 
39.7 
28.7 

32.1 

10.7 

6.40 

0.18 

6.01 

9.96 

4.04 

0 
0 
0 

>3 
0 
1 
0 
3 

>3 
2 
1 
1 
1 1 
0 
2 1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
0 
1 
0 
0 
0 

1 

Threshold (in.) 

0.20 
- 

0 
0 
0 
0 

0 
1 

0 
1 
1 
1 

0 
1 

1 
1 
0 
0 
1 
1 
1 
2 
0 
0 
0 
0 
0 
0 
0 
0 

- 

0.03 - 
1 
1 
2 
1 

0 
1 

1 
1 
1 
0 
1 
1 
r3 
1 
0 
1 
2 
1 
1 
1 

0 
1 

1 
1 
2 
1 

0 
1 

__ 

0.05 
- 

1 
1 
2 
1 

0 
1 

1 
1 
2 
0 
2 
1 
2 
1 
0 
1 
3 
1 
1 
1 
0 
0 

0 
1 

2 
1 
1 
0 

- 

0.10 
- 

0 
1 
2 
0 

0 
1 

0 
1 
1 
0 
1 
1 
2 
1 

0 
0 

3 
1 
1 
1 
0 
0 
0 
0 
0 
1 

0 
1 

- 

TABLE 4"Summary of order estimates from tables 1 ,  2, and 3. O= 
number of Oregon stations;  C=number of Colorado stations; N =  
number of New Mexico stations. 

I order estlmsted 

1 

V C N  
" 

1 1 8  

1 9  

2 6  
1 6  

1 6  
1 

1 2 13 
1 
1 10 

2 7  
1 9  

1 4  
7 

O C N  
" 

0.01 1 2  
.m 
.03 1 
.05 2 
.10 1 6  
. 2 0  2 8  
.30 13 
.w 1 
. 01 1 1  
.02 
.03 4 
.El 5 
.10 1 7  

-30 7 
.w 2 

.m 2 9  

threshold increases. It is further  indicated by the presen- 
tation of table 6, where the order estimates from the two 
driest and the two  wettest  New Mexico stations  (as judged 
by mean seasonal precipitation) show a dist.inct separation, 
mit,h wetter records giving higher values of estimated r.  

Another interesting point of comparison is between 
Oregon stations and New Mexico stations having about 
the  same  seasonal mean precipitation. In January, Squaw 
Butte, Oreg., and  Corona  and Fort  Bayard, N. Mex., 

have comparable mean precipitation values near 1 in. 
In the comparisons of  order estimates  between Oregon's 
station and New Mexico's stations,  the result is  that at 
threshold 0.01  in.  New Mexico gets estimates of r=l  
while Oregon gets an estimate  that r exceeds 3. Similarly, 
comparing  Squaw Butte with Bloomfield  and University 
Park in  July (mean precipitations near in.), the result 
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TABLE 5.”Mean order  estimates*  calculated f rom table 4 

Period 

F, is the number of stations for which the order estimate is r, and the summations are 
‘The mean  order estimate was calculated as (ZrF,/ZF,) where r is the estimated older, 

taken over r .  
**Since New Mexico  used a threshold of 0.30 and not 0.50, and Colorado used 0.50 and 

not 0.30, these two results  are  combined as representative simply of a “large threshold.” 
To separate  them would require ZF, to be only 3 for Colorado’s  threshold of 0.50-a 
small  number for these purposes. 

TABLE 6,”Order estimates for the two  seasonally  driest  and the two 
seasonally  wettest  New  Mexico  stations. @)=the number of dry 
stations; (B) =the  number of wet stations. 

Threshold 

Stations 
Threshold (in.) 

0.01 0.03 0.05 0.10 0.20 0.30, 0.50.’ 

New Mexicoonly __._.__..._. 

New Mexico,  Colorado, and 
1.35  1.33  1.33 0.82 0.41 0.47 New Mexico plus Colorado.. 
1.29 1.36 1.36 0.86 0.43  0.07 

New Mexico plus Colorado.. 0.88 0.73 0.67 0.53 0.41 0.59 
New Mexicoonly ________..__ 0.93 0.71 0.64 0.50 0.43 0.50 

New Mexico,  Colorado, and 

Oregon ____..._.______..___ 1.47 0.50 

Oregon ____._.______.._.___ 

0.01 
.03 
.05 
. l o  
.20 
. 3 0  

Order estimated 
January 

Order estimated 
July 

- !  ” 

0 

is that, New  Mexico gets  estimates of 0 and 1 while Oregon 
gets an estimate of 2. 

A tentative explanation for these  larger  order  estimates 
in Oregon as compared with similarly wet stations in  New 
Mexico  for both  winter  and  summer is that in both seasons 
the air mass climate in Oregon is more diverse. This is 
open for further  investigation,  as is the  validation of the 
conclusion that Oregon’s order  estimates are higher. 

5. CONCLUSiONS 
Though the specific methodology of the studies  sum- 

marized here differs in details from that of other regional 
studies (e.g. [6]), the general conclusion seems warranted 
that use of simple, or first order,  Markov  chain models of 
daily  precipitation occurrence is sufficient for such objec- 
tives  as  estimations of the probabilities of spells and 
sequences of various kinds. There is evidence in our study, 
however, that in some areas-tentatively characterized as 
being climatologically diverse within  a season-orders 
greater  than 1 may  be more  appropriate. The reference of 
Feyerherm  and  Bark [7] to a  tendency of this sort in April 
in  the upper  Midwest  adds to  the credibility of this 
conclusion. 

801 

A second conclusion is that threshold values separating 
wet  days  from  dry  days should be relatively  small if a 
simple  chain is used. If thresholds are above, say, 0.10 in. 
a day,  the resulting analysis probably includes as “dry” 
too many  days which are clearly “wet”  in  terms of their 
dynamic, or “air mass” potentialities  for  production of 
precipitation. The  result is likely to be a process which 
tests as a  random process: order 0. I n  this case the Chi- 
square  methods proposed are  unable to distinguish be- 
tween randomness and  the  lack of suitably long records. 
This comment suggests that  future research might profit- 
ably  investigate models employing three, and where 
record  length  permits,  four states. 
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